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RADIATIVE HEAT TRANSFER NEAR THE STAGNATION POINT */120
OF A BLUNT BODY

Z.5.Galanova

“éfoblems related to calculation of radiative heat transfer
near the stagnation point of a two-dimensional or axisym-
metric body in hypersonic flow are considered. They are,
namely: 1) the effect of radiative heat transfer on con-
vective heat transfer; 2) calculation of the radiant heat
flux from a certain volume of gas toward a given point on
the body{; Under certain assumptions with respect to the
radiation field, the problem is reduced to a form conveni-
ent for computer programming. A system of equations is ob-
tained which determines the heat flux toward the wall due
to the heat conductivity of the gas and to radiation by
using the hypothesis of a two-dimensional parallel layer
which in this case replaces the region between the shock
wave and body and whose width is equal to the shock layer.
Then, the problem of calculating the radiant heat flux
toward a certain region near the stagnation point of a
sphere is analyzed without using the hypothesis of a
two-dimensional parallel layer. Formulas for computing
the mutual effects of radiative heat transfer and heat
conductivity, and for radiant heat flow to the neighbor-

hood of the stagnation point are obtained.

% Numbers in the margin indicate pagination in the original foreign text.
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This paper considers questions connected with the calculation of radiative
heat transfer in the neighborhood of the stagnation point of a two-dimensional
or axisymmetric body in hypersonic flow:

1) the effect of radiative heat transfer on convective heat transfer;
2) calculation of the radiant heat flux at a given point of the body
about which a certain volume of gas circulates.

Under the usual assumptions relative to the radiation field (effects of
scattering, radiation pressure, and density of radiant energy all assumed as
small; gas in a state close to chemical and thermodynamic equilibrium), the
problem reduces to a form convenient for computer programing.

The flow of the radiating gas between the shock wave and the body is de-
scribed by the Navier-Stokes equations, with a radiation term in the equation
of energy and in the equation of radiative transfer. Under the above assump-
tions, these equations may be written in the form of
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where Jy is the intensity of radiation, the superscript 1 relates to rays
traveling from right to left (with the angle & varying from O to -%—); the
volume superscript 2 denotes rays traveling from left to right (96[%%-, n]);
oy is the absorption coefficient; 9 is the angle between the direction of the
radiation and the ordinate axis; s represents the direction of radiation. The
flux of radiant energy of the v~th frequency of the k-direction in projection
onto the i axis will then be
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On the boundary of the region under investigation (in this case: body to shock
wave), the conditions for the intensity of radiation JSLZ) must be prescribed.
Thus, the calculation of the radiation in problems of gas dynamics makes it
necessary to investigate the entire flow region in one unit. The solution of
this general problem will answer all questions connected with radiative heat
transfer.

In view of the complexity of the problem, various simplifying assumptions
must be made. HEarlier authors (Bibl.2 - 5) reported on studies of the flow /121
of the radiating gas in the neighborhood of the axial line. We will use the
following scheme to describe the flow in the vicinity of the frontal point of a

blunt body. We will consider that the shock wave is so thin that we can neglect

e . s s
the effects of curvature, pose }§ = 0, and determine the pressure variations

in the direction of the x axis by the precise Newton formula

or V 20k 2
F ( R am) XPys
where b is an empirical constant equal to unity for a sphere (Bibl.5), k = —%i—.

For the radiation, we will adopt the hypothesis of a plane-parallel layer often
used in astrophysics. This stipulates that the radiation is from a plane layer
with constant T and P, on lines parallel to the boundary. In our case, we will
replace the entire region between the shock wave and the body by a plane layer
of a thickness equal to the thickness of the shock layer at the stagnation
point, and let the thermodynamic quantities vary only along the depth of the
layer. Then, by virtue of the symmetry of the flow relative to the oy axis
(the ox axis is directed along the body, the oy axis along the normal to the
body at the frontal point) and confining the calculation to terms of the order

of x, we will have




P=P()’). T=T(y)9 hzh(y)v 'U:'U()’), r~ux, (2)
p=p(y), IO =INMy), a=xu,(y), \=X(y).

We present below an expression for the radiant heat flux at the frontal
point from a spherical segment with known distribution of the parameters. A
comparison with the radiant flux from a plane layer may be of interest for
evaluating the hypothesis of the plane-parallel layer.

1. Thus, under the assurptions adopted; the system of equations describing
the flow in the neighborhood of the frontal point will have the form
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(3)

with satisfaction of the conditions of dynamic compatibility on the shock-wave

front and of the conditions of adhesion to the wall:

e —folio .;
at y::A, h—=h,, a_.R_Mx v= =

ot y=0, u=0=0, h=h,. (5)
Here By denotes the Planck function; A is the thickness of the shock layer; R is
the radius of the sphere; ¢ is zero for two-dimensional bodies and unity for
axisymmetric ones; the subscripts refer to the parameters: A beyond the shock
wave, w on the wall,  in the relative flow. The remainder of the notation /122
is standard. One of the conditions (5) is used to determine the unknown thick-
ness of the éhock layer A.

Let us take the absorptance of the boundary of the shock wave as equal to

o~




unity, that of the wall as B, and consider the intensity 32 (A) to be known.
Then, the condition of balance of the radiant energy on the wall will give the

missing condition for the radiation intensity:

at  y=o, J“'(0)~—sB..+(1——9)/"’(0).;

at A, JB(A)=Cu. (57)

Pagsing to new variables, we have
u:-..;f'('q)Rd. x=Rx, J&P=ar{7"?, C.A—_-:cT:E.‘..‘

p==psp, p=1psp, B,=0oTiB,, a,= a0, = S;d}a
y-_—.._-]/ 2y, h=hy k, v=V ydv, d—-—V":k Ug.

On the basis of egs.(2), we can rewrite the system (3) - (4) with the boundary

conditions (5) - (5') in the following form:
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1(2’("1.) = Cose (9)
The formal solution of egs.(7) with the boundary conditions (9) can be written

in quadratures.

L 3

Elementary transformations will yield the following expression for

{
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The method of solution of the system (6) with the boundary conditions (8) is as

follows: Let us represent the functions, depending on h and entering into the

system (6), in the form of polynomials of a certain degree

(12)

Substituting the series (12) into the system (6), we obtain recurrent equations

for the determination of f, and 5&, for arbitrary <.

Hereafter, we will use the following identities, which can be proved by
elementary transformations using the method of mathematical induction (for

simplicity, we will omit the vinculum over the required functions):
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The equations for the determination of f 1 and h{, will have the form
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Here,If{A(ﬂ) is the coefficient of the term of degree Bo in the expansion in Bp
of the right-hand side of the equation of energy [eg.(6)].

It is customary to use the following symbolic notation in writing egs.(14):

0

|
VW
},,,m..— (k) PR1 = ), |
NE |
m-l',_,ﬁ'dhmﬂ

a () PRy = g a(hy).

a(ho) mean that the

Here and in what follows, the expressions a(hp) and

known functions a(h) and a(h) = F(h) are found as functions of T from the

previously determined functions ho = ho(T). Let us determine o) (my, ¥ (m),

eeoy L(/&)(T}), LN .
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As an example let us expand in a series in B, the function e~ :‘1?5 ?'d" .

Elementary transformations, using the identities (13.1) - (13.2), will then

yield e a'::‘

con b 'T (_._l)lla )
e mﬁ(ZBS’A‘"") =

f.; ) ?' m) sl m) (l m)
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for which the following symbolic notation is customarily used:

{~n, lem—...—n;_4 ' . o
2, 3 .. Y G Cy Crommrocnpy = %
Ry=@ My =0 nj_g=0 ]

-{° atij=0,1>0, '
TG at /=0, =0, ..+

Performing the corresponding operations with all terms in eq.(10) and making /126
use of the connectivity between the {-th term of the expansion in series in Bo
of the product (A°C)§§ as well as of the known terms of the expansion of its

cofactors (A)g; and (C)g2 (m =0, 1, ce0y )
¥
(AC)-I = 2 (A)—,. (C)Bx-.. |

A=0

we obtain the following expressions for L°(m), L‘*)(7), ..., VM), ...
L (n)=0,

9
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The expressions for L) (T) and L3’ (1) can be written in more compact form:

r

where the sign [ 1]' denotes the symbol derivative
dac dacC 4 p2 C . |
(O =G (), (1G] =28 G (h)+81 55 (). |
Thus, the problem of the flow of a radiating gas in the neighborhood of the

axial line has been reduced to the solution of egs.(1l;) which, for 4 = 1,

2y +eey are a system of ubo ogeneous ordinary linear equations of the type

ax(n)f: +a:(7l)fl+as("l)fl +ac(n) fit+a; (1) hi -} ag (‘ﬂ)kl-—*av (*a)
b("l)’ll+bz(’l)hx+b("l)’lt+b4("l)ft o),

where all the coefficients a(7) and b(T) are known functions of T. The solution
of egs.(14) will determine the heat flux to the wall, due both to thermal con~
duction by the gas and to radiation. The latter is represented by eq.(1l) for
k =2 as - : ;
| " (0)= 2«j f 4 (0) sin 0 cos § didy = ‘\ [128

(16)
+ —C‘" Sin om‘

L L; v

If we assume that the radiation has no effect on the velocity profile nor on
the departure of the shock wave, and if we set K = const, Pr = const, the prob-
lem will be greatly simplified; in this case, we need only solve the system

(14.0) and perform quadratures:

11
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2. We now consider the question of calculating the radiant heat flux in a
certain neighborhood of the leading edge of a sphere circumflowed by a hyper-
soni§:Fzg%hout using the plane-parallel layer hypothesis for the radiation.

let us assume that the shape of the shock wave is prescribed (to simplify
the reasoning, let us consider that there is a sphere of radius R + A up to a
certain point A(Xo, Yo, Zo)s 20 < R), and that we know the gas-dynamic and
thermodynamic parameters between the shock wave and the body. Because of the
symmetry of the radiating volume, the radiant heat flux will be the same along
circles with their center at the critical point and lying on the sphere 1. We
can therefore consider the plane projection of our volume in the first quadrant
of the vertical plane xoz (see diagram). Iet us restrict the calculation to
considering only those points on the sphere in this gas flow, where the tangent
planes to these points cut off spherical segments from the radiating volume.
Obviously, if we produce the tangent from the point A to the circle of a radius
R, then the coordinates of the point of tangency B(X, é) will determine the

boundary of the region to be investigated on the sphere. Elementary transforma-

tions will yield

, 2

L |
a2+ 01.2,
|




where

and we must use here that sign in the formulas for k;» and bz which will /129
make X3, > O and %, > 0. The expression for the radiant heat flux from an
arbitrary volume to an arbitrary point has been given previously (Bivl.1). For

a "nongray™ medimm it has the form

'q; }'fif@&exp (—er)sinOcosﬁdM?d"d”". { (18)
e o 1

t x; and 2z; be the coordinates of an arbitrary point on the circle of radius R,

belonging to the region [0, X; R, Z]. Let us transfer the origin of coordinates

L

[4
] -4t
to the point C(x;, %) and superpose the axis ox with the tangent to the
circle I at the point C. The formulas of transition from the system of coordi-~
nates xyz to xity'z" will then read

X =ux,-x"cos ¢, —2"sin ¢, |

z=2l+£'COS?1+xﬂs‘n?h;
y=y,

where o, is the angle of slope of the tangent from the point C to the axis ox

We can now pass to a determination of the limits of integration over r, 8,
and © in eq.(18). In view of the asymmetry of the radiating volume relative to
the plane x"Cz", it is obvious that the value of the angle © lies in the region

13




[«- _, —”—]. The shock wave, as far as the point A in the system x"y"z",

2 2
is determined by the equation
(&~ aP y (2" o = (R+ 8,
where

a = — X, COS 9, ~~Z, 8in 9;, ¢==X,;SinP;~~2,COS P,

On variation of ¢ from - —%—- to -%- the wave forms, in the planes x" =

y™" tan o, segments whose arcs are determined by the equations

(s —asine )+ —or =R+ ap—ateosty. (19)

Hence, it is obvious that 96[- —12’—, -g—-], but that r§ [0, r; ], where iy is the

distance from the point C(x1, 21 ) to the point of intersection of the straight

14

line 2z = Sl;c 3 cotan 89 with the circle of eq.(l?). The expression for r

then becomes
ro=|asinesinb4ccost + l

T V(asmqasln 0+ccos6)’+(R+A‘)'-,—a"——c'l : \

The sign must be taken such that

2,7y=cos0 [asin g sin 9 - 1Y

Making use of the symbolic notation given earlier (Bibl.l), we can write /130

the expression for the radiant heat flux at the point C in the form of
q=[""%‘l ";"]l—"%'o ';_]{Ot rl]‘ \ (20)
For the frontal point, we have ¢, = 0, x3 =0, 23 =R

eosd + VR cos W (RFAF—R° |\

where the sign must be so selected that

4= S RES#Y & condV Rt T RF =R >0

and eq.(20) can be written as
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q==§§{0,-%}]ﬂi*rﬂ. (21)

Equation (21), together with eq.(16) permit an evaluation of the hypothesis of
the plane-parallel layer and a more accurate determination of the radiant heat

flux.
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